Photograph by Irwin Thompson, Dallas Morning News/AP
The winds of Hurricane Katrina blow the roof off a restaurant in Kenner, Louisiana, on August 29, 2005.
A hurricane can be viewed as an engine that gathers energy from warm, humid tropical water and releases it in swirling winds. And its massive size makes for a massive release of power.
Hurricane Katrina at its peak—about 17 hours before its destructive August 2005 landfall in Louisiana—had hurricane-force winds that extended as far as 105 miles (169 kilometers) from its center. Those winds also blew at sustained speeds of 175 miles per hour (282 kilometers per hour).
That means Katrina was producing about 20 trillion watts of power, or 20 million megawatts, calculates Kerry Emanuel, a professor of atmospheric science at the Massachusetts Institute of Technology.
That approaches 1,000 times the capacity of Louisiana's entire fleet of power plants (26,000 megawatts, as measured during peak summer months.)
Calculating the energy in a hurricane's winds is more than an academic pursuit. Federal scientists are studying a new rating system that strives to better measure a hurricane's destructive potential. At the heart of the new system is a broader measure of a hurricane's winds, expressed as "integrated kinetic energy."
Proponents of the new system argue that it can better predict storm surge, the swell of water that is pushed ashore by a storm's winds. It is the storm surge that causes most deaths in hurricanes, including in Hurricane Katrina, which claimed nearly 1,000 lives.
هیچ نظری موجود نیست:
ارسال یک نظر