February
8, 2013
For more than a decade, scientists have observed “ship tracks” in natural-color satellite imagery of
the ocean. These bright, linear trails amidst the cloud layers are created by
particles and gases from ships. They are a visible manifestation of pollution
from ship exhaust, and scientists can now see that ships have a more subtle,
almost invisible, signature as well.
Data from the Dutch and Finnish-built Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite
show long tracks of elevated nitrogen dioxide (NO2) levels along certain shipping routes. NO2,
is among a group of highly-reactiveoxides of nitrogen, known as NOx, that can lead to the production of
fine particles and ozone that damage the human cardiovascular and respiratory
systems. Combustion engines, such as those that propel ships and motor
vehicles, are a major source of NO2 pollution.
The map above is based on OMI measurements acquired between 2005
and 2012. The NO2 signal is most prominent in an Indian
Ocean shipping lane between Sri Lanka and Singapore, appearing as a distinct
orange line against (lighter) background levels of NO2.
Other shipping lanes that run through the Gulf of Aden, the Red Sea, and the
Mediterranean Sea also show elevated NO2 levels,
as do routes from Singapore to points in China. These aren’t the only busy
shipping lanes in the world, but they are the most apparent because ship
traffic is concentrated along narrow, well-established lanes.
The Atlantic and Pacific Oceans also have heavy ship traffic,
but OMI doesn’t pick up NO2 pollution tracks because the shipping
routes are less consistent. The shapes of landmasses force ships into narrow
paths in the Indian Ocean, while ships in the Atlantic and Pacific tend to
spread out over a broad areas as they navigate around storms.
In addition, the air over the northeastern Indian Ocean is
relatively pristine. Heavy NO2 pollution (dark red in the map) from
cities and off-shore drilling activity along the coasts of China, Europe, and
the United States obscures the ship tracks that might otherwise be visible to
OMI. In the map, the Arctic is gray because the lack of light during the winter
and frequent cloudiness during the summer prevented OMI from collecting usable
data in the area.
Urban areas and industrialization aren’t the only source of NO2 in the map. Agricultural burning in southern Africa and persistent westerly
winds make
an elevated band of NO2 that stretches from southern Africa
to Australia. (In central Africa, easterly winds push pollutants from fires
toward the Atlantic, keeping NO2 levels comparatively low over the
northern Indian Ocean.) Lightning, which produces
NOx, also contributes to background NO2 levels.
Just how much shipping contributes to overall NOx emissions remains an open question
for scientists. Research suggests that shipping accounts for 15 to 30 percent
of global NOx emissions; scientists are using satellite
observations to reduce the uncertainty in such estimates.
OMI is not the only satellite instrument observing NO2 levels in the atmosphere. The Global
Ozone Monitoring Experiment (GOME)
instruments on the European Space Agency’s ERS-2 and MetOp-A satellites, as well as theSCIAMACHY instrument on the Envisat satellite, have made similar
measurements. In 2012, Dutch scientists publisheda
study combining
data from all four instruments to show that the NO2 signal
over major shipping increased steadily between 2003 and 2008, then dropped
sharply due to the global recession and reduction in ship traffic.
· References
· deRuyter de Wildt, M., H. Eskes, and K. F. Boersma (2012, Jan.
5) The global economic cycle and
satellite-derived NO2trends
over shipping lanes. Geophysical Research Letters.
· Franke, K., Richter, A., Bovensmann, H., Eyring, V., Jöckel, P.,
Hoor, P., and Burrows, J. P. (2009) Ship emitted NO2 in the Indian Ocean: comparison
of model results with satellite data. Atmospheric Chemistry and Physics.
· Vinken, G., Boersma F. (2011) From ship smokestack to global
air pollution: bridging the scales to better constrain ship NOx emissions from space. (PDF) Solas News.
· Vinken, G., Boersma, F., Jacob, J., and Meijer, W. (2011) Accounting for non-linear
chemistry of ship plumes in the GEOS-Chem global chemistry transport model. Atmospheric Chemistry and Physics.
· Wang, C., Corbett, J., Firestone, J. (2008) Improving Spatial Representation of Global
Ship Emissions Inventories.Environmental Science Technology.
NASA Earth Observatory image by Jesse Allen, using OMI NO2 data
provided courtesy of Lok Lamsal, Aura Project Science Office. Caption by Adam Voiland, with
information from Nickolay Krotkov, Anne Thompson, Geert Vinken, and Folkert
Boersma.
Instrument:
Aura – OMI
هیچ نظری موجود نیست:
ارسال یک نظر